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Miguel Aranda, Gonzalo López-Nicolás and Carlos Sagüés
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Abstract—We present a method for visual control of a set of
robots moving on the ground plane. The goal of the control task
is for the team to reach a desired geometric configuration. Each
robot carries an omnidirectional camera and can communicate
with a number of the other robots. The approach relies on the
computation of the planar motion between two views, by means
of 1D homographies. This knowledge, obtained by each robot
from its own images and the visual information received from
neighboring robots, allows it to define a desired position on
the plane. Then, we propose a novel control scheme based on
computing a particular 2D transformation to drive each robot
towards its goal position. A contribution of this work is the use
of 1D homography in a multirobot control framework. This tool

allows to deal with purely angular visual information, which is
precise and requires no calibration. The approach we present is
completely distributed. Each robot uses only information from its
formation neighbors and the global centroid to obtain its motion
commands. These individual behaviors naturally result in the
complete team of robots reaching the desired global configuration.

Keywords—multirobot systems; vision-based control; mobile
robots; multiple-view geometry; formation control

I. INTRODUCTION

Research in the field of multirobot systems has grown in
recent years. A variety of tasks in robotics can be carried
out more efficiently with a group of agents than with a
single one. Moreover, technological advances are making the
implementation of systems featuring multiple robots more and
more feasible every day. The problem of controlling the motion
of multiple robots to enable the execution of a desired task
finds applications in such areas as cooperative exploration,
perception, search and rescue or surveillance.

We address in this work the control of a set of robots
moving on a planar ground so that the group attains a desired
geometric configuration. Many works have tackled the problem
of enabling teams of ground robots to reach and maintain
a formation shape [1]–[6]. The specific characteristics of the
sensing and the communications within the group are key to
this task. With regard to the sensing, we use vision, which
provides abundant information at a relatively modest cost.
Vision sensors have been employed previously in a number of
related works in the context of multirobot control, including
both centralized [7], [8] and distributed [9], [10] schemes.
These two categories of approaches to the design of systems
consisting of multiple robots have been extensively explored
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in the literature, although it appears that distributed methods
are becoming increasingly popular due to their robustness,
scalability and flexibility.

A very relevant difference between this paper and the
existing works on vision-based multirobot control is given
by our use of the 1D homography model [11]–[13]. This
allows us to exploit the planar camera motion constraint and
benefit from the robustness typically associated to multiple-
view geometric models [11]. We use omnidirectional cameras,
a natural choice given that we work with purely angular
information. The available amount of angular information is
maximized when cameras of this type are employed, thanks
to their large field of view. In our approach, each robot is
assumed to carry an omnidirectional camera. By using its own
images and the visual information received from other agents,
the robot obtains an estimation of its relative position with
respect to the others. This task is carried out employing the
epipoles computed from the 1D homographies, and a state
observer which calculates the distances to the other robots.
Using this information, we define a distributed control scheme
which drives the robot team to the desired configuration. In
particular, the scheme is based on geometric transformations
computed by each robot using the relative positions of its
formation neighbors.

Let us highlight a number of advantages of the proposed
method: first, the angular visual information provided by om-
nidirectional vision is rich and precise, and it can be extracted
without the need for specific calibration. In fact, any sensor
providing angular information can be used. When considering
the problem of planar structure and motion computation from
angular information, the 1D trifocal tensor is the standard
geometric model available [14], [15]. However, we address this
problem employing a two-view model (the 1D homography)
which is more efficient to compute and simpler to use. Also,
our technique relies only on the visual information extracted
from the scene surrounding the set of robots. Thus, we do not
require to visually perceive, segment and identify the neigh-
bors, and the method is robust to their occlusion. Concerning
the control scheme we propose, it has interesting properties:
it is coordinate-free, completely distributed, and efficient to
compute, and it generates satisfactory robot trajectories.

II. PLANAR MOTION FROM TWO 1D VIEWS

Our multirobot control method relies on the computation of
an unconstrained planar (i.e. occurring in a 2D space) motion
from two 1D views. Let us analyze the feasibility of this
task and its information requirements. Consider the Euclidean
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structure and motion problem for a set of landmarks in 2D
projected in two calibrated 1D views. The position of each
landmark is determined with two parameters, and the relative
motion is determined with three (one for the rotation and two
for the translation). Since the reconstruction is obtained up
to an overall scale factor, the number of parameters needed
is reduced by one. As the projection of each landmark in
the two 1D views provides two equations, we have, for n
landmarks, 2n + 3 − 1 parameters and 2n equations. Thus,
there are always two more parameters than equations, and
the problem is not solvable, regardless of the number of
landmarks. It is well-known [14], [15] that three views are
needed to solve the 2D structure and motion problem in a
general case. However, we can try to consider restrictions in
the landmark positions in the two-view case. Indeed, if three
landmarks belong to the same line in the 2D space, there
is one geometric constraint relating their coordinates. With
two different lines, we have two independent constraints, and
the problem becomes solvable. Thus, if we have landmarks
belonging to two different lines (with at least three landmarks
in each of the lines) we can compute the 2D motion from two
1D views.

What is important is that there exists a convenient way
to exploit this possibility, using 1D homographies. This is
discussed in the following section.

A. Motion from 1D homographies

A 1D homography is a projective transformation between
two 1D views induced by a line in the 2D projective space. It
is expressed as a 2× 2 matrix with three degrees of freedom.
It is known that from the 1D projections in two views of
at least three landmarks belonging to a line in 2D, we can
compute a 1D homography by solving a linear system. Thus,
from a putative set of 1D correspondences, we can look for
two different 1D homographies, each fitting a subset of the
correspondences. Then, notice that these two homographies
capture exactly the required information to compute the 2D
motion, as discussed in the previous section. The advantage
of using 1D homographies for the task is that they can be
computed linearly and robustly. Moreover, as shown in our
previous work [13], the motion can be extracted from the
two 1D homographies in a straightforward manner. In the
mentioned work, to which we refer the interested reader, the
planar motion computation procedure is explained in detail.
The basic aspects of this method are reviewed next.

The projections in two 1D images of points belonging to
a line in a planar scene are related by a 1D homography. The
motion between the images is encapsulated by this transfor-
mation, Hc ∈ R

2×2, which can be expressed as a function of
the angle of rotation, φ, the translation vector, (t1, t2)

T , the
normal of the line, (n1, n2)

T , the distance to the line, d, and
a real-valued scale factor λ:

Hc = λ

[

cosφ+ t1n1/d − sinφ+ t1n2/d
sinφ+ t2n1/d cosφ+ t2n2/d

]

. (1)

As shown analytically in [13], the computation of the
motion between images from Hc results in a family of
infinite valid solutions. It is therefore not possible to compute

the motion from one 1D homography. Then, we propose a
method employing two homographies induced by two different
lines. Assuming that two different 1D homographies, H1 and
H2, can be computed between two views, it is possible to
calculate two projective transformations that map the images
to themselves, called 1D homologies. We can define these
transformations, called G1 and G2, as follows:

G1 = H−1
2 H1

G2 = H2H
−1
1 , (2)

where G1 maps view 1 to itself and G2 maps view 2 to itself.
Thanks to a well-known property of the homology, the epipoles
between the two 1D views can be obtained as eigenvectors of
the homology matrices G1 and G2. Then, if the angle of the
epipole in view 1 is α12 and the angle of the epipole in view
2 is α21, we can compute the relative motion (i.e. the rotation
angle, φ, and the angle of the translation vector, ψ), considering
the frame of view 1 as the reference, as follows:

φ = α12 − α21 + π

ψ = arctan(t2/t1) = α12. (3)

B. Use of 1D homographies within the proposed framework

The 1D points we use to obtain the homographies and the
planar motion arise from taking the angular coordinate of the
points in an omnidirectional image. Since, by definition, these
1D points are calibrated, the homographies we compute from
them will be calibrated and the reconstruction obtained (3) will
be directly Euclidean (as opposed to projective).

Our method has requirements regarding the structure of the
scene, because we need landmarks situated in two lines in the
2D projective space. In practice, these landmarks come from
the orthogonal projections of the 3D landmarks on the motion
plane. Thus, lines in this plane will arise from vertical planes
in the 3D scene (Fig. 1). Man-made environments commonly
contain vertical planes, which facilitates the applicability of our
method. Still, even when there are no real vertical planes in
the environment, the technique we propose can be functional.
When a considerable number of points are extracted and
matched between views, as is typically the case in practice,
1D homographies can be found, emerging from 3D points
belonging to virtual planes [16], [17].

As mentioned above, using 1D homographies we obtain the
relative angles between two images, which can alternatively be
expressed by a rotation and a translation in 2D. Given that this
is a purely image-based reconstruction, the translation is ob-
tained up to an unknown scale factor. However, our multirobot
control scheme requires the knowledge of the distance between
robots (i.e. the scale of the translation). The following section
addresses this issue through the use of a state observer.

III. STATE OBSERVER

We discuss in this section how the distance between two
robots is estimated in our method. As stated above, this
parameter is a degree of freedom in the computed planar
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Fig. 1. Origin of the 1D points used to compute the 1D homographies. Two
omnidirectional cameras, Ci and Cj , carried by robots ri and rj , are shown.
The angular components, αiP and αjP , of the camera projections of the scene
point P3D generate the 1D projections of the equivalent point P2D belonging
to the camera motion plane. The resulting 1D points in projective coordinates
for each camera are (sinαiP , cosαiP )T and (sinαjP , cosαjP )T , respec-
tively. Lines in the motion plane arise from vertical planes or non-vertical
lines, real or virtual, in the 3D space.

motion reconstruction, which results from the estimated angles
of the epipoles between robots. Still, it is possible to measure
the distance by using the knowledge of the motion performed
by the robots, together with these epipole angles. Then, in
order to obtain a better estimation of the distance parameter,
we integrate its measurements in a state observer, which is
described in the following.

Suppose that two robots (ri and rj) with unicycle kine-
matics and commanded with linear and angular velocities
(vi, ωi), (vj , ωj) are neighbors, i.e. there is a communica-
tion link between them, and that it is possible to compute
the epipoles between them using the 1D homography-based
method described in the previous section. Then, the dynamics
of the angle of the epipole αij and of the distance between
them (ρij) are as follows (see Fig. 2) [2]:

ρ̇ij = −vi cosαij − vj cosαji (4)

α̇ij =
vi sinαij + vj sinαji

ρij
− ωi. (5)

We use the two equations above to design a reduced-
state observer for the variable ρij . Notice that we can obtain
measurements of its value through:

ρmij =|
vi sinαij + vj sinαji

α̇ij + ωi

| . (6)

Then, we propose to use a Luenberger observer [18] by
injecting these measurements in the model of the system:

˙̂ρij = −vi cosαij − vj cosαji + Lo(ρ̂ij − ρmij ), (7)

where Lo is the gain of the observer. Thus, ρ̂ij is an improved
estimate of the distance between the two robots. The epipoles
are known to be variables that can be computed very precisely
and robustly. This makes them a good practical choice when
considering the variables to use in the design of an observer.
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Fig. 2. Left: variables used in the observer of the distance between two
robots, ri and rj . The angles of the epipoles, αij and αji, and the velocities
of the two robots, (vi, ωi) and (vj , ωj), are used to estimate the distance
between them, ρij . Right: sample simulation of the observer, displaying the
evolutions of the real value of ρij (thick solid line) and of the value given by
the observer of this variable for two cases: an initial overestimation (ρaij ) and

an initial underestimation (ρbij ).
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Fig. 3. Overall scheme of the proposed method for multirobot control.

The performance of the employed observer is illustrated in
Fig. 2, showing its convergence to the real value in simulation.

There are situations in which the estimation in (6) becomes
ill-conditioned or singular. We can deal with these cases, which
can be detected, by simply not injecting ρmij into the observer
whenever this estimate provides unreliable values. Notice that
since the different inter-robot distances are not independent,
it would be possible to use distributed estimation algorithms
which combine the measurements together in order to obtain
a more reliable value for each of them.

IV. CONTROL STRATEGY

An overview of the full system we propose to carry out the
control of the group of robots is depicted in Fig. 3. Next, we
describe in particular the way in which the motion control
commands for each robot are computed. Notice that using
the methods described in the sections above, we can obtain
both the relative angles and the distances between neighboring
robots. This provides each robot with a metric reconstruction
of the positions of other robots.

The approach we propose to control the motion of the
robots is inspired by our previous work [19]. In that work,
an image-based centralized visual control method was used
to bring a set of robots to a formation shape on a planar
ground. Using a single camera observing the robot team, a 2D
homography was computed from the image of the robots in the
desired configuration and the current image. This homography
mapped the positions of the robots in the current image to



a new set of positions which were used as the goals for the
image-based control. Thanks to the particular way in which
the homography was defined, the technique minimized at all
times the sum of squared distances the robots had to travel
for the set to reach the desired configuration. Moreover, we
showed in that work that multiple cameras implementing the
proposed approach could be used to carry out the desired task
in a partially distributed control scheme.

Here, we use a similar idea, i.e. we address the control task
through the computation of an appropriate geometric transfor-
mation between the sets of current and reference positions.
Unlike in the approach of [19], now these positions will not
be calibrated image points, but rather the metric 2D positions
of other robots expressed in the reference frame of the camera
carried by each robot.

We assume that robot ri, i = 1, ..., N , knows at each time
these relative positions for a given set of robots Ii, card(Ii) ≤
N − 1. The control interactions between robots can then be
described by an undirected formation graph,Gf , wherein every
robot ri is linked to all the robots in the set Ii. Let us denote as
p′ and p the sets of desired positions and current positions of
the N robots, respectively, expressed in two arbitrary Cartesian
reference frames. Then, robot ri knows a set of positions in the
reference configuration (which we call p′

i = {p′

ii,p
′

ij, ...,p
′

ik})
and a set of positions in the current configuration of the group
of robots (which we call pi(t) = {pii(t),pij(t), ...,pik(t)}).
Since these positions are expressed in the reference frame of
ri, it is clear that p′

ii = (0, 0)T and pii(t) = (0, 0)T . The
control strategy followed by each robot is based on using
its known sets of positions to compute a 2D transformation
having a particular parametrization. A general Euclidean 2D
transformation, He ∈ R

3×3, relates two sets of points through
a rotation (φe) and translation (t = (txe, tye)

T :

He =

[

cosφe sinφe txe
− sinφe cosφe tye

0 0 1

]

. (8)

Similarly to the work [19], we wish to compute a 2D
Euclidean transformation, but we will derive it using a
parametrization simpler than (8). This requires a prior transla-
tion of the positions in the two sets. Here, this translation is
such that the points are expressed with respect to the global
centroids. These centroids, cip′ for p′ and cip for p, are also
expressed in the reference frame of ri. Thus, we have:

p′

ic = p′

i − cip′ , pic = pi − cip . (9)

Then, the sets of positions p′

ic and pic are used to compute
a transformation constrained to having the following form:

Hil =





hl
11

hl
12

0
−hl

12
hl
11

0
0 0 hl

33



 ∼

[

s cosφl s sinφl 0
−s sinφl s cosφl 0

0 0 1

]

.

(10)

Unlike (8), the transformation (10) is not Euclidean. How-
ever, as shown in [19], it can be computed linearly using SVD

and allows to obtain the least-squares Euclidean transformation
that we are looking for, Hd

i , as follows:

Hd
i = Hil · diag(1/s, 1/s, 0). (11)

Then, robot ri uses this computed transformation to obtain
its desired position on the plane:

pd
i = Hd

i p
′

ic + cip. (12)

In order to drive ri to the desired location, denoting pd
i =

(pdix, p
d
iy)

T , we use the following position-based control law:

vi = kv · ||p
d
i || (13)

ωi = kω · atan2(pdiy, p
d
ix), (14)

where kv and kω are appropriately adjusted control gains.

As shown in [19], if a centralized system is assumed (or,
equivalently, if every robot knows the relative positions of
all the other robots), this strategy defines desired positions
that satisfy the team’s desired configuration while minimizing
the sum of their squared distances from the robots’ current
positions. However, a key observation is that the method can
also be implemented in a decentralized fashion, with each robot
interacting only with a subset of the team.

The control we propose results in each robot always
moving towards a position situated at the desired distance from
that robot to the global centroid, while getting closer to the
partial desired configuration (i.e. the one including only its
neighbors in the formation graph). By continuously looking
to place the robots at their desired distances to the centroid,
the desired overall cohesiveness of the robotic group is always
sought and maintained, even when the specific target shape has
not yet been reached. This behavior exhibited by the robots
is encapsulated in a simple and efficient manner by the 2D
transformation we employ. We have observed that it is required
to use the global centroid so as to ensure convergence of our
control. Otherwise, instability may occur depending on the
formation graph and the geometry of the desired configuration.
Thus, the only global information that every robot needs to
have is an estimation of the centroid of the whole group. This
is a usual requirement for coordination in multirobot systems.
The centroid information is not costly to communicate among
robots and can be computed in a distributed fashion, as shown
in several recent works [20], [21]. Our approach can make use
of these available methods. We assume that the centroid will
vary slowly enough that any dynamic effects in its estimation
process can be ignored, which is reasonable in practice.

Once the centroid is known, the control of robot ri relies
only on the relative positions of the robots in Ii. Thus, the
multirobot control system we propose is fully distributed.
Furthermore, we only require the formation graph Gf to
be connected. This modest connectivity requirement is an
advantage from the standpoint of system scalability. Observe
that in practice, two robots will interact directly if they can
communicate and compute their relative motion from common
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Fig. 4. (Best viewed in color) Simulation results for the proposed control
with a six-robot set having to reach a triangle-shaped configuration. Top: Robot
paths. The initial positions are joined by thin dashed lines, while the final ones
are joined by thicker dashed lines. Second row: reference configuration, with
lines showing the formation graph links between robots (left). Evolution of the
distances from the current robot positions to the ones given by the desired rigid
transformation computed using all the robots (right). Third row: evolutions of
the robots’ linear (left) and angular (right) velocities. Bottom row: evolution
of the two elements, h11 (left) and h12 (right), of the rigid transformation
H
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computed by each robot i.

visual information. These direct robot interactions will give
rise to an underlying graph, possibly dynamic, which may not
coincide with the static graph Gf . In any case, we require that
graph also to be connected for all time.
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Fig. 5. Results from a simulation of the proposed control strategy with one
hundred robots having to reach a square grid-shaped configuration. Top-left:
initial positions of the robots. Top-right: robot positions after 100 iterations.
Middle row: robot positions after 400 iterations (left) and 1000 iterations
(right). Bottom-left: final robot positions, after 2500 iterations. Bottom-right:
evolution of the average distances from the current robot positions to the ones
given by the desired rigid transformation computed using all the robots.

V. SIMULATIONS

In this section, we present simulation results to evaluate the
performance of the proposed approach. We assume that each
robot ri is able to obtain the relative position of the robots
in Ii, by using the 1D homography-based method described
in section II together with the observer defined in section
III. We also consider that the position of the centroid of the
whole group is available to every robot. For the first simulation
example we present, we consider a team of six robots having
to reach a desired triangle-shaped configuration from arbitrary
initial positions. The formation graph Gf is chosen to be the
sparsest possible, i.e. a chain of links connecting all the nodes.

The results are illustrated in Fig. 4. We represent the
paths followed by the robots when our control strategy is
employed, and the robot velocities. As can be seen from
these plots, the robots exhibit a good behavior in terms of
the smoothness of their trajectories, and the distributed control
scheme brings the team to the target configuration. The errors
between the robots’ current positions and the ones given by
the rigid mapping computed using all the robots (i.e. the
mapping obtained with global information) are also depicted.
Our control, even if based on partial information, provides
satisfactory error regulation performance. The figure displays
as well the evolution of the two components of the rigid 2D
transformation computed by each robot to obtain its control
commands. Since all of these transformations are computed
with respect to the common global centroid, it is clear that



they must converge to a unique, common transformation when
the robot set reaches the target configuration.

The second example we illustrate features a large robotic
team (one hundred agents). In this case, the robots are required
to attain a square grid shape. We consider that the connected
formation graph is such that each robot is linked to only
two other robots, selected among its nearest neighbors in the
desired configuration. From the results shown in Fig. 5, it can
be observed that the desired cohesiveness of the set is rapidly
achieved (see the 100 iterations plot) by our approach. The
robots finally reach the target configuration. Convergence is
slowed down in this case due to the large size of the group
and the sparse formation graph considered. The bottom-right
plot in the same figure illustrates this behavior. Throughout
extensive simulations, the control was consistently observed
to converge with varying numbers of robots, geometric con-
figurations and formation graphs.

VI. DISCUSSION AND FUTURE WORK

We have presented a distributed visual control method for
a team of robots moving on the ground plane. The proposed
approach relies on the computation of 1D homographies from
the visual information shared by the robots. A position-
based control strategy implemented by each robot using the
computed relative positions of its neighbors makes the group
reach a desired configuration.

Works addressing the formation control problem for mobile
robots often require the knowledge of the robots’ full state [3],
[5], or at least their orientation [4], expressed in a common
reference frame. In contrast, our method is coordinate-free,
i.e. each robot operates referring only to its own coordinate
frame. This makes the approach flexible and more feasible in
the case where the information must come only from vision
sensors carried by the robots. Also, we do not consider a leader
robot with respect to which the formation is defined, unlike [1],
[6], [9].

Regarding vision-based related works, the control methods
[8]–[10], [19] are all image-based, whereas our presented
approach is position-based. While this requires us to estimate
the relative states of the robots, it will lead, especially in
the cases where the visual sensing is distributed, to higher
accuracy. Since our control method is completely distributed,
it will be more scalable and robust than centralized [8] or
mixed [19] approaches. The works [9], [10] propose distributed
methods that do not use any sort of inter-agent communication,
but require each robot to visually sense and identify their
neighbors. Our use of multiple-view models avoids these tasks,
which can be challenging to carry out and provide limited
accuracy and flexibility.

Several issues relevant to this work could be interesting to
explore in the future: for instance, how to maintain the required
connectedness of the communications graph, the problem of
dynamically assigning the robots to the positions in the desired
configuration to improve the efficiency, or the incorporation of
a collision avoidance strategy.
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